AnyBook4Less.com
Find the Best Price on the Web
Order from a Major Online Bookstore
Developed by Fintix
Home  |  Store List  |  FAQ  |  Contact Us  |  
 
Ultimate Book Price Comparison Engine
Save Your Time And Money

Why Math? (Undergraduate Texts in Mathematics)

Please fill out form in order to compare prices
Title: Why Math? (Undergraduate Texts in Mathematics)
by R.D. Driver
ISBN: 0-387-94427-3
Publisher: Springer-Verlag
Pub. Date: 01 June, 1984
Format: Paperback
Volumes: 1
List Price(USD): $39.95
Your Country
Currency
Delivery
Include Used Books
Are you a club member of: Barnes and Noble
Books A Million Chapters.Indigo.ca

Average Customer Rating: 3 (1 review)

Customer Reviews

Rating: 3
Summary: sampling of math concepts; 3 1/2 stars
Comment: The book jacket says that it's designed for a "general education mathematics" course. That's about right. It's kind of a survey of a mixed bag of topics such as quadratic equations, area and volume, finding square roots and cube roots, geometric series and summing them, velocity vectors, doppler effect, special relativity (!) and time dilation, binary arithmetic, set notation, probability (maybe the best chapter). There are generous doses of equations here but all you need to know is basic algebra to grasp it all. I got up through college calculus (and forgot it all, and got this book because I felt my math brain cells shriveling when I was stumped by a simple equation in my non-math work) but found quite a few of the explanations and examples fairly challenging. At the same time this isn't really for the math enthusiast. In its 220 pages, it's rather patchy, covering just a few basic concepts and equations on each topic. But as far as it goes, it's pretty good.

To give you a sense of the book, in the brief chapter on relativity, for example, the book tells us:

"In his 1905 paper, Einstein rejected the idea of 'ether' and put forward the following remarkable idea: Light from whatever source propagates with the speed c . . . relative to any observer who can be considered 'stationary' or any observer moving with constant velocity relative to a stationary one. . . . [Thus] there is no way--and never will be--of moving objedcts faster than the speed of light. . . . Now consider the problem which two observers--one stationary and the other moving at a constant velocity--would have in trying to determine whether two events are simultaneous." Following up on this, the book gives a couple of problems, one starting like this: "If, for the train in Figure 1, the distance between the flashes is 2d, how much difference is there between the times of their firings according to observer A? Specifically, if 2d = 0.93 and v = 134 mph, what is the time difference?" The answer turns out to be a trillionth of a second or something like that.

Another problem worked out in the probability section goes "A woman has two cats, one grey and one black. If a visitor asks if one is male and the owner says yes, what is the probability that both are males? If the visitor asks if the grey cat is male, and the owner says yes, now what is the probability that both are males?" The answer may surprise you--if you know it won't, then you don't want this book. There are additional problems in each chapter, with answers for some.

I'd say this is an OK book for you if you're a non-math type but did OK in it and just want to refresh your memory of certain things covered here, but whether they're covered here or not is iffy. For example, no discussion of trig or calculus. I'd suggest you also consider Ian Stewart's Concepts of Modern Mathematics. Or Invitation to Mathematics by Konrad Jacobs (which is less narrative and definitely needs a more solid math background than Stewart's book or this one, but is nicely challenging). As someone who laments the fact that he isn't more literate in math, I haven't found the ideal "in a nutshell" kind of book but all these books help a bit.

Thank you for visiting www.AnyBook4Less.com and enjoy your savings!

Copyright� 2001-2021 Send your comments

Powered by Apache