AnyBook4Less.com | Order from a Major Online Bookstore |
![]() |
Home |  Store List |  FAQ |  Contact Us |   | ||
Ultimate Book Price Comparison Engine Save Your Time And Money |
![]() |
Title: Calculus , Student Solutions Manual by Deborah Hughes-Hallett, Andrew M. Gleason, Daniel E. Flath, Patti Frazer Lock, Sheldon P. Gordon, David O. Lomen, David Lovelock, William G. McCallum, Douglas Quinney, Brad G. Osgood ISBN: 0-471-36116-X Publisher: Wiley Text Books Pub. Date: 18 February, 2000 Format: Paperback Volumes: 1 List Price(USD): $38.95 |
Average Customer Rating: 2.1 (41 reviews)
Rating: 5
Summary: Clear, precise, detailed. I learned a lot from this book!
Comment: This book was used for my Fall 2002 Calculus III (multivariable) class. We used the last section of the book, chapters 12-19. I was able to review old concepts when needed from the earlier chapters, which were presented nicely.
I have noticed that a lot of other reviewers here have mixed feelings about this text. It would help if they stated their background which should be taken into account. I am a junior computer science/mathematics double major who does well in both subjects and is not afraid of reading through a long proof or spending time on advanced problems. Thus, my perspective is that of an advanced student. I noticed that the other students in my class were not all mathematics majors and there were a lot of physics/chemistry majors in the group. These people are probably learning from a pragmatic perspective and could probably care less about proofs, so as long as they pass they are happy.
The chapters from the book that I read in detail (12-19) I found to be full of great illustrations and examples and were presented in a clear logical manner without superfluous material/examples. Starting with the basic tools needed for multivariable calculus (multivariable functions, vector algebra), I found myself grasping topics and ideas very quickly (I aced the course). The exercises were not too difficult and could be solved in a few minutes using the information from the section. The problems require more time and sometimes ideas from other sections/subjects, but none are too difficult. Mostly every topic was given a algebraic and geometric explaination. The book provides a great introduction for beginners while the scope of topics covered appeals to advanced students as well.
In comparison to my old calculus text (Stewart) I found this book to have a lot more material in general that wasn't in Stewart, such as trig sub and fourier series. There is also a chapter on differential equations, which I should probably read before my class starts next semester ;D .
In summary, this review is from the perspective of a young mathematician, and I felt that it was perfect for me to learn from. I liked it enough to keep it. If you are in the same category you will find this to be a wonderful text. It is hard to say whether or not it should be recommended for beginners/non-math students, since I am not one, but from the other reviews on here it seems like some people have had trouble. If that's the case you might want to find a supplement (Standard Deviant's or Cliff's Notes). Learning calculus for the non-math student is not easy, so the best way is to just work harder.
Rating: 5
Summary: The Best Way To Learn Calculus
Comment: I got my PhD and am now a professor of physics. A long, long time ago, I used photocopies of this book. The book hadn't been published yet, and was still under review.
A decade later, I still remember this book.
Poor students will hate this book. It requires you to think critically and analytically. It requires you to understand the material well enough to be creative in your problem solving. It is definitely more of a concepts book than it is a "do this integral", "test this series for convergence", "differentiate this function" type of book.
Good students will love this book. You often have to make connections between concepts yourself, but the exercises are obviously written to help you make the connection. This is a thinking person's book. Not a mindless student's book. And, I feel obligated to point out (even though it should be obvious), even a 4.0 GPA student can be a "mindless student". A 4.0 means nothing in this grade inflated, rampant cheating, educationally watered down society we live in.
Last words. I used this book before it got published. Our professor used photocopy handouts. I think we were guinea pigs for the book. The one criticism I have is that sometimes you really need just to solve 20 very difficult integrals in a row. Sometimes brute force calculational problem solving is just necessary, not to learn the concept, but to gain the skill required to master a subject.
The handouts I recall didn't have the 100 odd mindless calculational type problems. Most of the problems were subtle, thinking person's problems. I think the best approach would be a combination of the two: problems to teach concepts and problems to teach skill. This book (in the form I saw) had more of the former, and very few of the latter.
As far as the "back of the book" odd numbered problems being often wrong, I can not comment on that. Even as a undergrad, I never used "back of the book answers". Maybe they were wrong, and maybe they weren't. In any event, that wouldn't kill such a wonderful book for me.
Rating: 4
Summary: Strange...but I liked this text!
Comment: I'm currently in the middle of my third semester using this text. I used this text for Calc 1, Cald 2, and am using it for Calc 3. At first, I HATED this text book. The exercises are rarely the same type of problems found in the examples, and not every odd answer is given in the back of the book (There is a solution manual that is very helpful, or if you're lucky enough your school may have the complete instructor's solution manual as a .pdf). That being said...
This book will make you a better problem solver, period. It forces you to grapple with the ideas and concepts presented in Calculus, and then apply it in different ways. Yes, there are some "plug and chug" exercises, where you just follow certain algorithms presented in the examples as a way to get to solutions. But most of the problems are much different than the examples, and if you can work through them (which any one can do with some persistence) you'll understand the material all the better. And, you'll be a better problem solver in other disciplines like computer science, physics, or engineering.
I have several people in my other classes who did not use this text, and the difference between those who learned calculus from this text, and those who learned if from a different text, is definately noticable. So, if this is your book, be prepared to struggle, but know that it will probably be worth it in the end.
Thank you for visiting www.AnyBook4Less.com and enjoy your savings!
Copyright� 2001-2021 Send your comments